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The classical equations of Young-Laplace (equilibrium shape of a fluid interface in a uniform 
gravitational field) and Young (angle of contact of the fluid interface with a solid) are generalized 
to take into account: (i) the presence of externally applied fields of any type; (ii) the variation 
of the interfacial tensions from point to point; (iii) the variation of the fluid interfacial tension 
with its orientation in space. 

The general equations are deduced simultaneously by a variational method, which allows 
the determination of the minimum Helmholz energy configuration of a system comprising the 
two fluids and the solid. An axially symmetric geometry is assumed. 

The equations so derived clarify the difficulties that have been found in the application of the 
classical equations-particularly Young’s equation-to actual systems. Both equations, in their 
general form, contain terms that may be interpreted as representing the interaction between the 
three interfaces near their line of contact, and such an interaction cannot be ignored in actual 
systems. 

1 INTRODUCTION 

The equilibrium shape of the interface between two fluids (i.e., liquid-liquid 
or liquid-vapour) in a uniform gravitational field g can be determined from 
the Young-Laplace equation’-3. This equation establishes that the difference 
in hydrostatic pressure between two points, at the same height, one in each 
fluid, is balanced by the pressure difference across the interface, the latter 
being given by y(l/R1 + l/R2), where R , ,  R ,  are the principal radii of 
curvature of the interface at any point and y is the interfacial tension. 
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286 M. A .  FORTES 

For an axially symmetric geometry, with the interface intersecting the 
axis of symmetry (z-axis) at a point 0, it is convenient to place the origin at 0 
and choose z pointing to the centre of curvature at 0. If x denotes the dist- 
ance to the z-axis (i.e., x is the usual cylindrical coordinate), the interface is 
defined by x = f (z) and Young-Laplace’s equation takes the form: 

Here A p  = pi - pe,  where pi and per respectively, are the densities of the 
fluids in the “inner” and “outer” sides of the interface, “inner” meaning the 
side of the centre of curvature at 0; g* is the z-component of g (i.e., g* = fg); 
and R ( R  > 0) is the radius of curvature at the apex 0 of the interface. Equa- 
tion (1) can also be deduced by a thermodynamic argument, imposing a 
minimum Helmholtz energy to a system comprising the two fluids and their 
in te r fa~e .~  

In general, the two fluids and their interface contact a solid, and boundary 
conditions forf(z) have to be introduced at the line of contact of the three 
interfaces (the fluid interface and the two solid-fluid interfaces). It is, of 
course, assumed that Eq. 1 is applicable, with the same value of y, up to that 
line. In addition to boundary conditions of a geometrical nature, it is generally 
agreed that the angle of contact of the fluid interface with the solid surface has 
a fixed value, which can be determined from the three interfacial tensions by 
Young’s equation 1,3 

Here ye, y i  are the interfacial tensions for the solid-fluid i and solid-fluid e 
interfaces and the angle of contact Oi is defined as the angle between the fluid 
interface and the solid-fluid i interface (0, = 7c - Oi). 

The derivation of Eq. 2 is somewhat controversial. In elementary texts it is 
derived from the equilibrium of force components parallel to the solid sur- 
face, identifying the interfacial tensions with forces (per unit length) parallel 
to the interfaces and acting perpendicularly to the line of contact. This 
identification is objectionable in the case of the solid-fluid interfaces, where a 
distinction has to be made between surface tension (essentially a surface 
energy) and surface stresses.’ Also, no equilibrium of such “forces” is ob- 
tained when the components normal to  the solid surface are considered. 
More refined deductions of Young’s equation are based on thermodynamic 

but they consider particular geometries (e.g., a planar solid 
surface) and do not take into account possible effects of externally applied 
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SHAPE OF A FLUID INTERFACE 281 

fields. It is by no means obvious that the angle of contact should be indepen- 
dent of g, to mention only gravitational fields. 

In addition to these difficulties, there is the problem, recently raised by 
various authors,g-’ that the interfacial tensions may be altered or perturbed 
near the line of contact, due to the interaction of the various interfaces, and 
it is not clear what should be the form of Young’s equation when these effects 
are taken into account. Furthermore, in such a situation the two equations 
(Young-Laplace and Young) can no longer be treated and derived as in- 
dependent equations, as they classically are, since y cannot be regarded as 
independent of position in (and of) the interface, as implicit in the Young- 
Laplace equation. 

In this paper we derive simultaneously the equation for the fluid interface 
profile and that for the angle of contact, in a very general situation, and, at 
the same time, we clarify the points raised above in connection with the 
applicability and derivation of the usual form of those equations (Eqs. 1 and 
2). The question of the possible effect of external fields on the angle of contact 
is also discussed. 

A general axially symmetric geometry is considered, with a solid surface 
of any shape. The only restriction is that we assume that the fluid interface 
intersects the axis of symmetry; this restriction could be avoided, but it 
considerably simplifies the mathematical solution of the problem (see 
Appendix). The derivation takes into account the presence of conservative 
fields of any type, which may affect both the bulk and interfacial free energy 
of the fluids. Finally, it is assumed that the solid-fluid interfacial tensions 
may change with position, so as to simulate a non-homogeneous solid, and 
that the fluid interface tension may change both with position and with the 
orientation of the interface in space. The case where y also varies with curva- 
ture cannot be treated by the mathematical technique used in this paper. 

The method to be used is essentially a thermodynamical one, in that we 
minimize the Helmholtz energy of a system comprising the three interfaces. 
For such a general situation, as the one we shall deal with, relatively complex 
methods of variational calculus are required. The problem turns out to be a 
particular, though complicated, form of the so-called isperimetric problem, 
known as Mayer’s problem with a variable end-point, the solution of which is 
discussed in detail in Ref. 13. 

2 FORMULATION OF THE PROBLEM 

Let us consider a closed system (see Figure 1)  at a given temperature, 
with axial symmetry, formed by a solid and two immiscible fluids and 
their interfaces. The two fluids are essentially treated as uncompressible. 
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FIGURE 1 Diagram of the system to be analysed. The two fluids are denoted by I and e ;  
their interface is defined by x = / ( z ) .  The solid surface has a profile z+ = S(x). The z-axis is 
directed to the center of curvature Cat the apex 0 of the fluid interface; I* is antiparallel to z .  

The fluid interface intersects the axis of symmetry (z-axis) at  a point 0, and 
z is directed to the centre of curvature C of the interface at 0. We call fluid 
i the one in the side of C and fluid e the other. 

The shape of the solid surface is given and is defined by 

z* = S(x) (3) 
with the axes x, z* fixed to the solid. We choose z* antiparallel to z, as in 
Figure 1. The (conservative) external fields give rise to potential energies P i  
and P ,  per unit volume of fluids i and e. Both Pi and P ,  depend on position 
relative to a “fixed” referential, i.e., they depend on x, z*. The interfacial 
tensions will be denoted by y, yi and y e .  7 may vary with position in and orienta- 
tion of the interface,due to the external fields, and yi, y, may vary with position 
in the interface, if, for example, the solid is not homogeneous. 

The system is defined by a fixed boundary and includes given volumes of 
the two fluids and a fixed extension of the solid surface. The boundary can be 
placed anywhere provided it includes the entire fluid interface. The equilib- 
rium configuration under these conditions is the one that minimizes the 
Helmholtz energy of the system. The energy terms that have to be taken into 
account are the interfacial energy terms, A, ,  and the bulk potential energy, A, .  

Alternatively, one may consider that the value of the pressure is fixed 
somewhere in one of the fluids (e.g., where that fluid meets the boundary of the 
system). If, within the region that comprises the fluid interface, we neglect 
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SHAPE OF A FLUID INTERFACE 289 

the variation of density due to the variation of pressure from point to point, 
we can determine, from the value of that pressure, the volume occupied by 
each fluid, independently of the position of the interface. This case, where 
both fluids are regarded as uncompressible relative to pressure variations 
within the region of the interface, is then equivalent to the previous one, as 
far as the thermodynamical criterion of equilibrium is concerned. 

It is then required to minimize A = A,  + A,, for a given volume of fluid i ,  
for example. Note that since the boundary of the system is fixed, V,  is deter- 
mined by V, .  

(Figure l), so that 

Let 

We denote by a the distance between the 

z* = a - z. 

x =fW 

origins of the axis z and z* 

(4) 

( 5 )  

be the equation of the fluid interface profile. It would be possible, though not 
so convenient, to take x as the independent variable. The point where the 
profile meets the solid has a coordinate z = b (Figure 1). Then 

u = b + S( f (b ) ) .  

P = Pi - P, 
r = Y i  - 

We introduce 

We then have 
Y = y(f(z); 0 - z;f’(z)) 
r = r(x) 
P = P ( x ;  a - z). 

(7) 

As/(z) and/or b vary, the Helmholtz energy A = A,  + A, varies. The energy 
terms that may, in fact, vary, can be written as follows (q, r denote auxiliarly 
variables which replace x, z respectively; i.e., S = S(q); r = T(q);f = f(t); 
p = p(V; Q - t); Y = ?(f(<>; a - t;f’(c))): 

A, = 2 7 t ~ f ( l  +f ‘z )1 ‘2  d( + 2nqT(I + Y2)“* dq (9)  Job 
a - S(s) 

A,, = /0”b’2nq dq 1 P d t  + Jobdl r ” 2 7 c q P  dq. (10) 

In  lhese equations xo is the value of x at the point of intersection of the solid- 
fluid i interface with the boundary of the system (Figure I ) .  It should be made 
clear that the 7’s in Eq. 9 are the surface tensions and not the specific surface 
Helmholtz energies. The two quantities only coincide when no adsorption 
occurs (6).  
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290 M. A .  FORTES 

The volume of fluid i is 
b 

i: = i ,nf2 d< + /x:)~$S’ dq. (1 1) 

Strictly, these expressions apply if S’(x)  2 0 and f ’ ( z )  2 0 everywhere. To 
take into account all possibilities, one would have to decompose some of the 
integrals above into as many integrals of the same type (but with inverted or 
different limits) as the regions where S‘(x) and f’(z) have a given (-t-) sign. 
These complications do not alter the final equations, and will not be treated 
explicitly. 

Therefore, the problem to be solved can be formulated in the following way. 
Given the functions S, r, y ,  P (see Eqs. 3 and 8) and the volume (Eq. 1 l), 
find the function x = f ( z )  and the value b, for which A = A ,  + A, (Eqs. 9 and 
10) is a minimum. The value of a is then determined from Eq. 6. 

This is a problem in variational calculus. Its solution can be obtained by a 
method due to Mayer,13 but not for a general dependence of y and P on their 
arguments. The difficulty is the presence of the unknown parameter a in the 
argument of these functions. However, the difficulty can be avoided if we 
take for y and P the polynomial forms: 

N 

P = 1 P,(a - z)” 
n = O  

with yn = y , ( x ; f ’ ( z ) )  and Pn = P,(x) .  Some of the y n ,  P, may be identically 
zero ( N  can be taken the same in the two expressions); in particular, Po can 
always be taken equal to zero. The form [12] is in general a reasonable 
approximation since almost any physically relevant y or P can be written 
in that form. 

The details of the solution are indicated in the Appendix. In the following 
section we present and discuss the main equations derived in the Appendix, 
and in the final section we give examples of application of each of these 
equations. 

3 FUNDAMENTAL EQUATIONS 

The main equations obtained in the solution of the problem formulated in 
the previous section are as follows (for details of the solution see the Ap- 
pendix). 
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SHAPE OF A FLUID INTERFACE 29 1 

3a Equation of the Fluid Surface 

The differential equation that determines the fluid interface profile is 
Eq. A23 of the Appendix: 

= ( l + f  ) y + f -  + f P - k f  
l 2  3 

where k is a constant and all the functions and their derivatives are taken at a 
point x = f(z); z of the interface (for example, P = P(f(z); a - 2 ) ;  ay/af = 
(ay /dx) ,=f , z , ) .  This equation may be written in the form: 

I 2  1/2 dy f ( l  + f f 2 ) - 1 l 2 y  - ff'(1 +f ) a!'  dz 

(14)  12 112 =f( l  +f ) - ff'P + k f f ' .  

The constant k can be related to the curvature at the origin:? 

where R is the radius of curvature at the origin and (0) means "at the origin." 
If x (instead of z )  is chosen as the independent variable, the profile z = g ( x )  

is obtained from: 

xg'(1 + g '2 ) -1 /2y  + x ( l  + !! - x p  + kx 
dx ag 

(16) 
These equations are to be regarded as a generalization of the Young-Laplace 
equation to cases where any external fields are applied and the interfacial 
tension changes from point to point and with inclination. 

Note that the solid-fluid interfacial tensions do not appear in the equations. 
The same can be said about the shape of the solid. This does not mean, 
however, that the solid may not have an indirect effect on the equilibrium 
shape, since it may affect the value of y in its neighbourhood. 

(t) The average curvature 2, at any point is given by 
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292 M. A. FORTES 

The particular form of y and P that was assumed (Eq. 12) does not figure 
explicitly in the final equations 13,14, 15, which suggests that these equations 
are valid for any y and P.  Finally, the restriction that the fluid interface should 
intersect the symmetry axis, although convenient in the derivation, is likely 
to be physically irrelevant, so that the equation should also apply to cases 
where this condition is not met (e.g., in liquid bridges). The restriction could 
in fact be avoided by using the arc length s along the profile as the independent 
variable, but the formalism would be greatly complicated. In such cases, for 
example, in liquid bridges, the origin of the axes is conveniently placed at one 
of the solid surfaces and directcd to other; fluid i is then the one that “wets” 
the z-axis in the region z 5 0. 

For y = constant, the equation of the profile takes the form 

which, for P = -Ap.g* . z ,  is identical to Eq. 1. In general, Eq. 17 can be 
written in the form 

A p  + P = k = constant (18) 

where Ap is the pressure difference across the interface. The average curvature 
A of the interface changes from point to point in such a way that the variation 
in Ap = 2Ly is equal to the change in P(P is the difference between the poten- 
tial energies per unit volume of the two fluids at the same point). In particular, 
the interface can only be an equipotential of the external field if that equi- 
potential is a surface of constant curvature. 

3b Equation for the angle of contact 

This is Eq. A25 of the Appendix, which can be written in the simpler form 
A28 : 

(19) 

Bi is the angle of contact of fluid i with the solid; a determines the orientation 
(or inclination) of the interface in space (Figure 2) and is defined by a = 
ctg-’f’. The values of the y’s and of ay/a sin a are taken at the point where 
the three interfaces meet. 

The angle of contact is independent of geometry and of any external fields 
that change the bulk energy of the fluids. When y is independent of inclina- 
tion, Eq. 19 reduces to the form of Young’s equation (Eq. 2), although the y’s 
may vary from point to point. 
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SHAPE OF A FLUID INTERFACE 293 

FIGURE 2 
orientation in space of the fluid interface and 0 is the angle of contact for fluid i. 

Definition of angles that enter in the equations of the angle of contact. a defines the 

It may be possible that an applied field changes the values of the y’s as com- 
pared to their values in the absence of that field. Equation 19 is also valid in 
such cases, provided the appropriate values of the y’s are introduced in the 
equation. In general, then, there may be an effect of the applied fields in the 
angle of contact. This will certainly be the case of an electric field applied to 
charged interfaces (see Section 4c). However, gravitational and centrifugal 
fields (of the type to be considered in Section 4) will probably have little or no 
effect on the equilibrium structure and charge distribution at an interface 
and do not consequently alter the angle of contact.” 

It is interesting to note that Eq. 19 can still be obtained from an equilibrium 
of forces parallel to the solid surface, if in addition to the interfacial tensions 
we include, among the forces, a “torque,” i.e., a force ay/a sin a acting along 
the normal to the fluid interface, as shown in Figure 3. Note that the “torque” 
is ay/a sin a = (l/cos a)ay/da and not ay/da as generally be1ie~ed.l~ 

If the solid surface is planar, as in Figure 4, we may take a = b, and the 
functions y and P ,  of the type defined in Eqs. 8 or 12, can be thought of as 

FIGURE 3 Diagram showing ’* the forces’’ that enter in the equation for the angle of contact. 
The y’s act parallel to the respective interfaces, while ?y/d  sin a acts along the normal to the fluid 
interface. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



294 M. A .  FORTES 

-* 

FIGURE 4 The equilibrium configuration o r a  fluid interface in contact with a planar surface. 
The value of y may depend on the distance to the solid surface. 

describing the short range interaction with the solid surface, since this inter- 
action will depend on the distance to that surface. The angle of contact, as 
given by Eq. 19, may then deviate significantly from the one calculated by 
Young's equation using the unperturbed values of the interfacial tensions 
(i.e., the values far from the line of contact), even if  the effect of inclination is 
not taken into account. 

In general, and even in the absence of any other effects, it is therefore 
necessary to distinguish between a microscopic angle of contact, calculated 
from Eq. 19, and a macroscopic angle of contact, which can be obtained from 
Young's equation (Eq. 2) with the unperturbed values of the interfacial 
tensions. It has been argued, Ref. ( I  l),  that the latter angle is the one that is 
macroscopically measurable. In this context it would then be illuminating to 
calculate the fluid interface profile up to macroscopic distances to  the solid, 
assuming a particular short range interaction with the solid, in order to see 
if the macroscopic angle of contact (in the sense of assymptotic) coincides 
with the one obtained with the unperturbed values of the 7's. 

3c Overall relations 

The last fundamental equation is Eq. A26 of the Appendix: 

aY 
aj-1 2 0 a t  

b k 
yf( 1 + f")- ' I 2  - f f ' (  I + , f ' 2 ) ' / 2  2 - -1' - 1 f (  1 + f '2 ) ' /2  - d l  

+ 1"' qP(q ,  b)dq - IObd( JOf("q dq = 0 ( z  = b)  (20) 

where the first three terms are calculated at the point of contact. 
This equation can, in fact, be derived directly from Eq. 14 of the fluid 

interface profile. If this last equation is integrated between z = 0 and z = b, 
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SHAPE OF A FLUID INTERFACE 295 

we obtain, sincef(0) = 0, l/f‘(O) = 0: 

Job - JobJ(l +f I2 ) 112 - d t  + .ff‘Pdt = 0 (21) 
a< 

which is equivalent to Eq. 20. This can be seen by integrating by parts the last 
integral in Eq. 20. 

These equations establish a useful relation between various geometrical 
parameters of the fluid interface (i.e., R ,  b,f(b),f’(b)), the surface tension and 
the applied potential. An example will be given in Section 4b. 

Equations similar to Eqs. 20 and 21 can be obtained for any value of z 
(instead of b). Such equations, for a variable z, are integro-differential equa- 
tions equivalent to the differential equation of the profile (Eq. 13 and 14), but 
they include the boundary condition at the origin. 

4 APPLICATIONS 

In this section we apply the general equations of the previous section to three 
simple problems and at the same time discuss some important aspects of 
the applicability of those equations. 

4a Rotating fluids 

Consider two rotating fluids (constant angular speed, w), at rest relative to the 
solid surface (Figure 5).  The axis of rotation is an axis of symmetry of this 

FIGURE 5 
with constant angular speed o. 

Two fluids i and e in a cylindrical container. The system is in rigid body rotation 
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296 M. A. FORTES 

surface. We shall neglect gravity. Then 

o2 
2 Pi - pp)x2 = p 2  P = P i - P e =  - - (  

where pi and pc are the densities of the fluids in the side i (the side of the centre 
of curvature at the apex) and in the side e, respectively. This corresponds to 
associating a pseudo-potential to the centrifugal force, the value of which, 
per unit volume, is ( - 02pxz/2). 

For y = constant, Eq. 16 gives for the profile z = g(x) 

R(R > 0) is, as usual, the radius of curvature at the apex. This equation was 
used by Princen et al.' to calculate the shape of a rotating drop surrounded 
by a fluid of higher density. Integrating Eq. 23 once, we obtain, introducing 
the conditions at the apex 

= ax - px3 9' 
(1 + g ' y  

where 

Eq. 24 can be integrated again to obtain z = g(x). We shall only discuss the 
types of shapes that can be obtained, and to simplify we assume that the solid 
surface is cylindrical, of radius r. Then the boundary condition is (from 
Eq. 24) 

(26) cos 8, = ur - Br3 

where 8, is the angle of contact of fluid e with the solid. We assume, as dis- 
cussed previously, that this angle is independent of o; in particular, it is the 
same as for the fluid at absolute rest. There may be additional stationary 
points in  the profile, that is, points for which g' = 0. These are defined by 
x2 = u/fl (from Eq. 24) and can only occur if 0 < a/fl I r2 .  Using Eq. 26 
this is equivalent to 

If two fluids 1,2 of densities p I ,  p z ,  such that Ap = p1  - pz > 0 (e.g., fluid 1 
is a liquid, fluid 2 is a vapour), are to be placed in the sides i and e, the follow- 
ing possibilities should be distinguished. 
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cose, w 0 c0s43,<0 c o s q  < 0 

low high ul 

( 0 )  ( b )  ( C )  

FIGURE 6 Possible shapes for the interface between two rotating fluids in a cylindrical 
container. For 0, > n/2 (with p1 > p 2 )  the interface develops a “concavity” at high angular 
speeds. 

a) fluid 1 has an accute angle of contact with the solid (cos 8, > 0); the 
configuration of the interface is of the type shown schematically in Figure 6a. 

b) fluid 1 has an obtuse angle of contact with the solid (cos 8,  < 0); now 
two configurations may occur, one for low w, as in Figure 6b, and another for 
high o, as in Figure 6c. The threshold between these two configurations occurs 
for (see Eq. 27) 

For this value of o, the radius of curvature R is infinite. 
The previous analysis is based on the assumption that the angle of contact 

is independent of w, i.e., of the intensity of the applied field. This assumption, 
which, as previously discussed, is probably correct, could then be tested 
experimentally by studying the shapes of rotating fluid interfaces as a function 
of the field intensity (i.e., of o), a possibility which is remote in the case of 
gravitational fields. 

4b. Relation between dimensions in sessile and pendant drops 

We apply Eq. 20 to a liquid-vapour interface (Ap = pI - p,)  in contact 
with a planar horizontal solid surface, in a uniform gravitational field of 
intensity g. In this case P = & Ap g z, where the sign + applies to a sessile 
drop and the sign - to a pendant drop (Figure 7). With f ( b )  = d, the 
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C 

d 

C 

l R  

FIGURE 7 
sessile and pendant drops. 

The geometrical parameters, d, b, R ,  Y and 6 that enter in Eq. 29 deduced for 

integrals in Eq. 20 give 

r q P ( q , b ) d q  = + * A p . g - b . d 2  

/)t Jof"'q dv = + Ap . g I - ; dt.  

The last integral is V/2n, where V is the volume of the liquid drop. If 8 is the 
contact angle of the liquid, then 

(1  + f ' 2 ( b ) ) -  * I 2  = sin 8. 

Inserting in Eq. 20 (with y = constant), we finally obtain 

1 1 v dY Y sin 8 k - Apgb d - Apg - + - = 0. 2 2n d R 

The top signs apply to a sessile drop. All quantities in Eq. 29 are positive. 
Similar relations can be obtained for a non-planar solid surface (e.g., 

liquid menisci) and are very useful in discussions of capillarity phenomena. 

4 Shape and contact angle of drop with a surface double layer 
in a uniform electric field 

If a permanent double layer of momentum p (with p = constant) is present at 
the fluid interface, the appropriate expression for y,  when a uniform electric 
field E is applied in the direction of the z-axis, (Figure 8), is 

Y = Y o  - P . E  (30) 

where yo is the interfacial tension in the absence of E. We treat two ideal simple 
cases; no other fields are considered. 
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l z  
la1  I bl  I c l  

FIGURE 8 A fluid interface containing an electric double layer of momentum p of various 
orientations. The applied electric field E is parallel to the symmetry axis. The horizontal line 
represents the solid surface. 

a) The dipoles are oriented parallel to the applied field (Figure 8a). Then 

Y = Y ~ - F ;  ~ = P E  (31) 

In this case y is a constant, and the equilibrium shape is spherical. The angle 
of contact, Oi, of the liquid in the drop (fluid i) is 

Ye - Yi cos ei = - 
Yo - F 

where ye, yi are the interfacial tensions for the solid-fluid interfaces. 

8c). Then 
b) The dipoles are oriented perpendicular to the fluid interface (Fig. 8b, 

Y = Y , - , - ~ c o s ~ ;  F = p E  (33) 

(34) 

where 
cos 6 = &f’(l + p - 1 ’ 2 .  

The + sign applies to the situation of Figure 8b and the - sign to that of 
Fig. 8c. In this case y depends on the inclination of the interface, and 

Inserting in Eq. 14, we again obtain a surface of constant curvature, i.e., a 
spherical drop. 

For the angle of contact we obtain from Eq. 19 (or, preferably, from 
Eq. A25) 

(36) 

In Figure 9 we indicate the profiles of drops of a given volume, in contact 
with a planar solid surface, perpendicular to E. The angles Oi were calculated 
from Eqs. 32 and 36 for ye - y i  = 27 = y0/2y0. It was assumed that (ye 
- yi)/yo is not affected by the field. 

Ye - Yi T F 
Yo 

cos ei = 
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2 1 
2 3 

cos ei =- cos ei  =- 

3 1 
L L 

cosei =- cos e, =- 

FIGURE 9 Calculated shapes of a drop of a given volume in an electric field E. The profile is 
always circular, but the angle of contact changes with the orientation of the dipoles in the 
interface. The momentum p and the field E have the same magnitude in all cases. 

These results deserve some comments. When dipolar molecules are 
adsorbed at the interfaces, effects of this type should be present, since the 
dipoles at the fluid interface will interact, at least near the line of contact, 
with the electric field created by adsorbed molecules at the solid surface. This 
example shows once more that if such interactions are taken into account, 
large deviations are to be expected in the value of the (microscopic) contact 
angle as compared to its unperturbed (macroscopic) value obtained from 
Young's equation. 
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Appendix 

We follow closely the procedure and notation used in reference 13 to solve 
the isoperimetric problem enunciated in Section 2. 

It is required to find the function x = f(z) such that, for a particular but 
unknown value b of z, the Helmholtz energy A = A,  + A ,  (see Eqs. 9 and 10) 
is a minimum: 

with (cf. Eq. 6 )  

u = b + S(f(b)) 

subject to the condition (cf. Eq. 11) 

S ,  r, y, P are given functions of their arguments (Eq. 3 and 8), y and P being 
ofthe form defined in Eq. 12. That is, in the various integrals of(A1) and (A2), 
we have 

s = s(q); r = r(q) (A41 

Y n  = r n ( f ( O ;  f’(t)) 
N (A51 

P ,  = Pn(q). 

and 
N 

Y = C rn(a - 5)”; 

P = 1 P,(a - 5)”; 

n = O  

n = O  

In this and following expressions a dash means derivation with respect to the 
argument of a function. 
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We first introduce the expressions (AS) in (A l )  and simplify the integrals 
containing P .  Next we define the following functions of the variable z:  

N 
f0(z) = 1 fn0(z) + rl(”rq(l + S’2)’/2 dq 

n = O  J so 

+ s,”” fi [Sn+ ‘ ( f ( z ) )  - S” “(q)]dq (A6) 
n = O  n + 1 

f nt . = n! [ [if(l +f’2)1/2yn(a - <)”-’ dc 
(n - i)! 

with 

a(z) = z + S ( f ( 2 ) ) .  (A101 

We note that for z = 0 all these functions, and alsof(z), equal zero; and 
fo(b) = A / 2 n , f 1 ( b )  = v/2n. 

We now calculate the z-derivatives of the functions (A6) to (A9), and intro- 
duce additional functions 4 associated with each of those functions 

N N 
4o = f b  - 1 f:o - rffy 1 + - sy c sy: 

n = O  n = O  

4: = f n*‘ - ff ‘ p n  

Each of the #s is the difference between a f ’  and the calculated derivative of 
J and is therefore identically zero. In Eqs. A1 1 all the functions depend on z; 
for example = T(f(z)); S = S(f(z)); S’ = S’(f(z)); yn = yn ( f ( z ) ;  f’(z)); 
Pn = Pn(f(z)), etc. 
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Finally we introduce the following functions of z :  

*o = f o  

v 
$1 =f1 -5 

The problem can now be reformulated as follows. The vectorial function 
f(z) = { A  fo, f l ,  fni, E} ,  which we designate briefly by f(z) = {fk}, satisfies 
the “initial” condition 

fkm = 0 (A 13) 

and the binding conditions (t) (Eqs. A1 1): 

with 
dk(Z) = 0 

a(z> = z + S(f(z)). 

It is required to find the vectorial function Az) such that, for a particular 
z = b, 

$o is a minimum 

*I = o  (Z = b)  (A 16) 

The solution of this problem (isoperimetric problem) can be found by Mayer’s 
method, in the following way: 

1) Take 
h = 1 0 4 0  + 1141 + C Ani$ni + 1 A:$.* (A 17) 

n. i n 

where X = { I o ,  I , ,  In i ,  A:} = {Ak} is a vectorial function of z, to be deter- 
mined. We denote by h,,, 11,~ the partial derivatives of h with respect to 
fk,f; .  Then the solutionf(z) of the problem satisfies Mayer’s equations: 

2) In addition, for z = b, the functions have to satisfy the following 

(A191 

(‘420) 

“transversability” conditions 

v o $ o z  + V l l ( / l Z  = 1 h,; .s; ( z  = b) 
all f k  

‘0 *ofk + ‘ I $ l f k  = h,L ( z  = b) for eachf, 

t The method cannot be applied if the d~~ contain non-solvable integrals involvingf,,f;. 
This is why the general form ofy, P(Eq. 8) cannot be treated. 
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where t+bOz, +oIk ,  etc. are partial derivatives in order to z,X etc., and v = 
{ vo , v l )  is a constant vector. 

We shall omit the details of the calculations. The solution for Ak is obtained 
from Eqs. (A18), with the help of Eqs. (A20). 

lo, 1, = constant 

{ [a(b) - 23"" - S"' ' ( f ( z ) ) ) .  10 =n+l 

Also 

vo = A. 
v ,  = A,. 

Equation A18, forfk = 1; gives upon introduction of the A,, and simplification 

dz 1 
where 

All the functions are calculated at a point x =f(z); z.  For example: P = 
P(f(z); a - z); y = y ( f ( z ) ;  u - z ; f ' ( z ) ) .  Note that no vestiges of the partic- 
ular forms of y and P used in the derivation (Eq. A5) appear in (A23). 

Finally, the transversability conditions (A19) and (A20) forh = fcan  be 
combined to obtain two more equations. The first, obtained by eliminating 
the potential energy terms, is 
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The second relation is obtained by eliminating r: 
305 

+ qP(q, b)dq - PC r’q $ dq = 0 ( z  = b). (A26) 

Equation (A25) can be transformed by in’troducing the angles a, /3 and 8 = 
OL + /? defined in Figure 2. Since 

tg a = 1,’f‘; tg/3 = S‘ 
we obtain 

- r = ye - y i  = y cos 8 + sin O(l + f”) &J (Z = b)  (A27) af 
or 

ye  - yi = y cos 8 - sin 8 - dY (Z = b). a sin a 
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